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smartphones—a security risk for users

▶ privacy and usage cost concerns
▶ natively third-party programmable

▶ ”app stores” have programs in large numbers
▶ including malware and ”grayware”
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permission-based security models

▶ similar to VAX/VMS ”privileges” introduced in late 70’s
▶ popularized by smartphone OSes
▶ primarily: access control for sensitive APIs
▶ user approval of permissions → security and usability

implications?
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permissions—a concern for app developers

declaring permissions
too small a set ; runtime errors
too large a set ; worried users
optimal set ; maintenance hassle
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hassle compounds in a cross-platform setting
▶ permission

requirements vary
between platform
releases

▶ often inadequately
documented

▶ an app may come in
multiple variants

▶ sometimes because
of permission
restrictions

▶ can differ per
distribution
channel

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs



prevalent smartphone vendor supported approach

▶ infer required permissions from a program’s platform API use
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inverse inference: API use from permissions?
▶ ContextLogger2—a maximally intrusive app (unusual case)

▶ configuration script
▶ target & certificate compute−−−−−→ available permissions
▶ target & SDK & permissions compute−−−−−→ available/accessible APIs

▶ / lots of conditional compilation at API use sites
; ; Music Player Remote Control API accessibility (Symbian)
(define/public (have-mplayerremotecontrol.attr)

(and
(and (>= (s60-vernum.attr) 31)

(<= (s60-vernum.attr) 32))
(= (kit-vernum.attr) 31)
(sublist?
'(ReadDeviceData ReadUserData

WriteUserData WriteDeviceData)
(capabilities))))
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prevalent smartphone vendor supported approach

▶ infer required permissions from a program’s platform API use
▶ some tools are available

▶ examine either binaries or source code
▶ current tools for scanning native programs rely on heuristics

▶ dynamic loading and invocation (when allowed) make accurate
analysis difficult/impossible
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permission analysis tools availability

Android Stowaway, Permission Check Tool (both 3rd party)
bada API and Privilege Checker

BB10 none
Harmattan aegis-manifest (automatically generates a declaration)

Symbian Capability Scanner
Tizen API and Privilege Checker
WP7 Store Test Kit (managed code only in WP7 apps)
WP8 none
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cross-platform permission inference
▶ infer required permissions from a program’s platform-agnostic

API use
▶ implementations encapsulate platform API use

▶ and: declare permissions for each implementation of said APIs
▶ and: program against said APIs in a language you can analyze to

determine API use

Can reuse the same API:
▶ for multiple platforms (if can implement)
▶ in multiple apps (if suitably general)

domain engineering
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favorable language characteristics

interface-based abstraction
▶ to support organizing cross-platform codebases

static analysis friendliness
▶ to allow for accurate inference

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs



adopting the approach

▶ adopt a favorable language, preferably
▶ (coding conventions may help)

in-source permission annotations
▶ as an extra-language feature (probably within comments)
▶ using any language-provided annotation support
▶ by extending the language
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our proof of concept: based on Magnolia

▶ general-purpose research programming language Magnolia

▶ http://magnolia-lang.org/

▶ its implementation provides the required language infrastructure
▶ permission management is just one application for Magnolia

▶ perhaps: address error handling in general (not just permission
errors)

▶ separate idea of partiality from concrete details of error
reporting—Bagge: Separating exceptional concerns (2012)

▶ abstract over different mechanisms—Hasu: Concrete error
handling mechanisms should be configurable (2012)
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Magnolia’s interface-based abstraction

▶ a Magnolia interface is declared as a concept
▶ each concept may have multiple implementations
▶ one implementation may satisfy multiple concepts
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Magnolia’s static analysis friendliness

▶ Magnolia avoids ”dynamism”
▶ no pointers, carefully controlled aliasing
▶ no runtime passing of code (e.g., no higher-order functions)
▶ abstract data types, not objects

▶ concrete type and operations known at compile time
▶ makes up for restrictions with extensive support for static

”wiring” of components
▶ Magnolia promotes use of semantically rich concepts

▶ a concept may specify (some) semantics as axioms
▶ an operation may specify use limitations as guards
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declaring in Magnolia—what & how
▶ platform-specific required permission information (per operation,

per implementation)
▶ as a predicate expression—commonly need &&, sometimes ||
▶ to be collated into an inference result for a program
▶ e.g.,

alert RequiresPermission unless pre SNS_SERVICE()
▶ platform-agnostic, abstract permission error names (once each)

▶ to allow for error-handling in portable code
▶ e.g., alert NoPermissionSocial <: NoPermissionCloud;

▶ mappings between platform-specific, concrete errors and error
names (per operation, per implementation)

▶ for the compiler to implement the mapping
▶ e.g., alert NoPermissionSocial if post value == E_

PRIVILEGE_DENIED
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domain engineering an exporter:
data extraction and outputting
concept DataSrc = {

use World;
use DataCollection;

procedure readAll(upd sys : System, out coll : Coll);
};

concept DataTgt = {
use World;
use DataCollection;

procedure writeAll(upd sys : System, obs coll : Coll);
};
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runtime permission errors

implementation Permissions = {
alert NoPermission;

};
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platform-specific permissions
implementation HarmattanPermissions = {

use Permissions;
predicate TrackerReadAccess() = Permission; // Harmattan
predicate TrackerWriteAccess() = Permission; // Harmattan
predicate GrpMetadataUsers() = Permission; // Harmattan
// ...

};

implementation SymbianPermissions = {
use Permissions;
predicate ReadUserData() = Permission; // Symbian
// ...

};
Pardon the verbose syntax!
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Symbian-native contacts reader implementation
implementation SymbianNativeContactsSrc =

external C++ datasrc.SymbianContacts {
require type System;
require type Coll;
require SymbianPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre ReadUserData()
alert NoPermission if leaving KErrPermissionDenied
/* more alerts ... */;

};

satisfaction SymbianNativeContactsIsDataSrc = {
use DataCollection; use World; use SymbianPermissions;

} with SymbianNativeContactsSrc
models DataSrc;
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same for Harmattan
implementation HarmattanQtContactsSrc =

external C++ datasrc.HarmattanContacts {
require type System;
require type Coll;
require HarmattanPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre
TrackerReadAccess() && TrackerWriteAccess() &&
GrpMetadataUsers()

alert NoPermission unless pre haveQtContactsPerms()
/* more alerts ... */;

};

satisfaction HarmattanQtContactsIsDataSrc = {
use DataCollection; use World; use HarmattanPermissions;

} with HarmattanQtContactsSrc
models DataSrc;
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portable code, against platform-agnostic interfaces
implementation DefaultEngine = {

require DataSrc;
require DataTgt;

procedure exportData() {
var sys : System = initialState();
var dat : Coll;
on NoPermission in readAll

dat = emptyColl();
call readAll(sys, dat);
call writeAll(sys, dat);

}
};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs



one program configuration

program SymbianContactsSaver = {
use DefaultEngine;
use DefaultWorld;
use DefaultDataCollection;
use SymbianNativeContactsSrc;
use CxxFileOut;

};
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permission inference
▶ Magnolia compiler assembles a program—only relevant

implementations are included from codebase

currently in Magnolia
▶ accounts for all operations

that appear in the program
▶ any dead-code elimination

happens after inference
▶ build a set of permissions,

always picking left choice
from P1||P2 expressions

▶ e.g.,
(P1||P2)&&(P2||P1) →
{P1,P2}

more ideally
▶ would do some data-flow

analysis to disregard obviously
unreachable invocations

▶ would build a permission
expression, and turn it into a
set only afterwards, more
optimally, according to a
policy

▶ e.g., favor less sensitive
permissions
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gain: permission management solution
▶ tools support for avoiding

runtime errors due to
permission
underdeclaration

▶ assuming correct and
complete annotations,
and grantable &
granted permissions
(toggleable in BB10
and iOS)

▶ language support for
handling runtime
permission errors portably
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cost: annotation effort

▶ may be able to amortize annotation cost over many projects and
configurations

▶ unlike when manually declared in a per-project-configuration
manifest file

▶ a way to store and perhaps share domain knowledge
▶ ”I know this implementation of this API requires these

permissions”
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Anyxporter—permission management test app
https://github.com/bldl/anyxporter

▶ cross-platform
codebase, organized as
concepts

▶ one ”Magnoliafied”
build configuration,
with permission
inference

▶ Magnolia’s
integration with
configuration and
build tools still
needs work
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conclusion

▶ permissions are a concern to smartphone app devs
▶ we proposed a solution for permission management

▶ requires no pre-existing permission tooling
▶ can be applied to cross-platform codebases
▶ no separately declaring permissions for each program

▶ we tried out the solution
▶ by integrating permission support into Magnolia
▶ by inferring the permissions of a cross-platform app
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Anyxporter—contact data export
<?xml version="1.0" encoding="UTF-8"?>
<Contacts> ...

<Contact> ...
<ContactDetail>

<DefinitionName>DisplayLabel</DefinitionName>
<Label>Tero Hasu</Label>

</ContactDetail>
<ContactDetail>

<DefinitionName>EmailAddress</DefinitionName>
<EmailAddress>tero.hasu@ii.uib.no</EmailAddress>

</ContactDetail>
<ContactDetail>

<DefinitionName>Guid</DefinitionName>
<Guid>000000003e7be123-00e18ae873575ee5-41</Guid>

</ContactDetail> ...
</Contact> ...

</Contacts>
Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs


