
Inferring Required Permissions for Statically
Composed Programs

Tero Hasu Anya Helene Bagge Magne Haveraaen
{tero,anya,magne}@ii.uib.no

Bergen Language Design Laboratory
University of Bergen

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

mailto:tero@ii.uib.no

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

smartphones—a security risk for users

▶ privacy and usage cost concerns
▶ natively third-party programmable

▶ ”app stores” have programs in large numbers
▶ including malware and ”grayware”

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

permission-based security models

▶ similar to VAX/VMS ”privileges” introduced in late 70’s
▶ popularized by smartphone OSes
▶ primarily: access control for sensitive APIs
▶ user approval of permissions → security and usability

implications?

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

permissions—a concern for app developers

declaring permissions
too small a set ; runtime errors
too large a set ; worried users
optimal set ; maintenance hassle

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

hassle compounds in a cross-platform setting
▶ permission

requirements vary
between platform
releases

▶ often inadequately
documented

▶ an app may come in
multiple variants

▶ sometimes because
of permission
restrictions

▶ can differ per
distribution
channel

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

prevalent smartphone vendor supported approach

▶ infer required permissions from a program’s platform API use

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

inverse inference: API use from permissions?
▶ ContextLogger2—a maximally intrusive app (unusual case)

▶ configuration script
▶ target & certificate compute−−−−−→ available permissions
▶ target & SDK & permissions compute−−−−−→ available/accessible APIs

▶ / lots of conditional compilation at API use sites
; ; Music Player Remote Control API accessibility (Symbian)
(define/public (have-mplayerremotecontrol.attr)

(and
(and (>= (s60-vernum.attr) 31)

(<= (s60-vernum.attr) 32))
(= (kit-vernum.attr) 31)
(sublist?
'(ReadDeviceData ReadUserData

WriteUserData WriteDeviceData)
(capabilities))))

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

prevalent smartphone vendor supported approach

▶ infer required permissions from a program’s platform API use
▶ some tools are available

▶ examine either binaries or source code
▶ current tools for scanning native programs rely on heuristics

▶ dynamic loading and invocation (when allowed) make accurate
analysis difficult/impossible

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

permission analysis tools availability

Android Stowaway, Permission Check Tool (both 3rd party)
bada API and Privilege Checker

BB10 none
Harmattan aegis-manifest (automatically generates a declaration)

Symbian Capability Scanner
Tizen API and Privilege Checker
WP7 Store Test Kit (managed code only in WP7 apps)
WP8 none

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

cross-platform permission inference
▶ infer required permissions from a program’s platform-agnostic

API use
▶ implementations encapsulate platform API use

▶ and: declare permissions for each implementation of said APIs
▶ and: program against said APIs in a language you can analyze to

determine API use

Can reuse the same API:
▶ for multiple platforms (if can implement)
▶ in multiple apps (if suitably general)

domain engineering

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

favorable language characteristics

interface-based abstraction
▶ to support organizing cross-platform codebases

static analysis friendliness
▶ to allow for accurate inference

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

adopting the approach

▶ adopt a favorable language, preferably
▶ (coding conventions may help)

in-source permission annotations
▶ as an extra-language feature (probably within comments)
▶ using any language-provided annotation support
▶ by extending the language

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

our proof of concept: based on Magnolia

▶ general-purpose research programming language Magnolia

▶ http://magnolia-lang.org/

▶ its implementation provides the required language infrastructure
▶ permission management is just one application for Magnolia

▶ perhaps: address error handling in general (not just permission
errors)

▶ separate idea of partiality from concrete details of error
reporting—Bagge: Separating exceptional concerns (2012)

▶ abstract over different mechanisms—Hasu: Concrete error
handling mechanisms should be configurable (2012)

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

http://magnolia-lang.org/

Magnolia’s interface-based abstraction

▶ a Magnolia interface is declared as a concept
▶ each concept may have multiple implementations
▶ one implementation may satisfy multiple concepts

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

Magnolia’s static analysis friendliness

▶ Magnolia avoids ”dynamism”
▶ no pointers, carefully controlled aliasing
▶ no runtime passing of code (e.g., no higher-order functions)
▶ abstract data types, not objects

▶ concrete type and operations known at compile time
▶ makes up for restrictions with extensive support for static

”wiring” of components
▶ Magnolia promotes use of semantically rich concepts

▶ a concept may specify (some) semantics as axioms
▶ an operation may specify use limitations as guards

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

declaring in Magnolia—what & how
▶ platform-specific required permission information (per operation,

per implementation)
▶ as a predicate expression—commonly need &&, sometimes ||
▶ to be collated into an inference result for a program
▶ e.g.,

alert RequiresPermission unless pre SNS_SERVICE()
▶ platform-agnostic, abstract permission error names (once each)

▶ to allow for error-handling in portable code
▶ e.g., alert NoPermissionSocial <: NoPermissionCloud;

▶ mappings between platform-specific, concrete errors and error
names (per operation, per implementation)

▶ for the compiler to implement the mapping
▶ e.g., alert NoPermissionSocial if post value == E_

PRIVILEGE_DENIED

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

domain engineering an exporter:
data extraction and outputting
concept DataSrc = {

use World;
use DataCollection;

procedure readAll(upd sys : System, out coll : Coll);
};

concept DataTgt = {
use World;
use DataCollection;

procedure writeAll(upd sys : System, obs coll : Coll);
};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

runtime permission errors

implementation Permissions = {
alert NoPermission;

};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

platform-specific permissions
implementation HarmattanPermissions = {

use Permissions;
predicate TrackerReadAccess() = Permission; // Harmattan
predicate TrackerWriteAccess() = Permission; // Harmattan
predicate GrpMetadataUsers() = Permission; // Harmattan
// ...

};

implementation SymbianPermissions = {
use Permissions;
predicate ReadUserData() = Permission; // Symbian
// ...

};
Pardon the verbose syntax!

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

Symbian-native contacts reader implementation
implementation SymbianNativeContactsSrc =

external C++ datasrc.SymbianContacts {
require type System;
require type Coll;
require SymbianPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre ReadUserData()
alert NoPermission if leaving KErrPermissionDenied
/* more alerts ... */;

};

satisfaction SymbianNativeContactsIsDataSrc = {
use DataCollection; use World; use SymbianPermissions;

} with SymbianNativeContactsSrc
models DataSrc;

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

same for Harmattan
implementation HarmattanQtContactsSrc =

external C++ datasrc.HarmattanContacts {
require type System;
require type Coll;
require HarmattanPermissions;
procedure readAll(upd sys : System, out coll : Coll)

alert RequiresPermission unless pre
TrackerReadAccess() && TrackerWriteAccess() &&
GrpMetadataUsers()

alert NoPermission unless pre haveQtContactsPerms()
/* more alerts ... */;

};

satisfaction HarmattanQtContactsIsDataSrc = {
use DataCollection; use World; use HarmattanPermissions;

} with HarmattanQtContactsSrc
models DataSrc;

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

portable code, against platform-agnostic interfaces
implementation DefaultEngine = {

require DataSrc;
require DataTgt;

procedure exportData() {
var sys : System = initialState();
var dat : Coll;
on NoPermission in readAll

dat = emptyColl();
call readAll(sys, dat);
call writeAll(sys, dat);

}
};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

one program configuration

program SymbianContactsSaver = {
use DefaultEngine;
use DefaultWorld;
use DefaultDataCollection;
use SymbianNativeContactsSrc;
use CxxFileOut;

};

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

permission inference
▶ Magnolia compiler assembles a program—only relevant

implementations are included from codebase

currently in Magnolia
▶ accounts for all operations

that appear in the program
▶ any dead-code elimination

happens after inference
▶ build a set of permissions,

always picking left choice
from P1||P2 expressions

▶ e.g.,
(P1||P2)&&(P2||P1) →
{P1,P2}

more ideally
▶ would do some data-flow

analysis to disregard obviously
unreachable invocations

▶ would build a permission
expression, and turn it into a
set only afterwards, more
optimally, according to a
policy

▶ e.g., favor less sensitive
permissions

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

gain: permission management solution
▶ tools support for avoiding

runtime errors due to
permission
underdeclaration

▶ assuming correct and
complete annotations,
and grantable &
granted permissions
(toggleable in BB10
and iOS)

▶ language support for
handling runtime
permission errors portably

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

cost: annotation effort

▶ may be able to amortize annotation cost over many projects and
configurations

▶ unlike when manually declared in a per-project-configuration
manifest file

▶ a way to store and perhaps share domain knowledge
▶ ”I know this implementation of this API requires these

permissions”

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

Anyxporter—permission management test app
https://github.com/bldl/anyxporter

▶ cross-platform
codebase, organized as
concepts

▶ one ”Magnoliafied”
build configuration,
with permission
inference

▶ Magnolia’s
integration with
configuration and
build tools still
needs work

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

https://github.com/bldl/anyxporter

conclusion

▶ permissions are a concern to smartphone app devs
▶ we proposed a solution for permission management

▶ requires no pre-existing permission tooling
▶ can be applied to cross-platform codebases
▶ no separately declaring permissions for each program

▶ we tried out the solution
▶ by integrating permission support into Magnolia
▶ by inferring the permissions of a cross-platform app

Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

Anyxporter—contact data export
<?xml version="1.0" encoding="UTF-8"?>
<Contacts> ...

<Contact> ...
<ContactDetail>

<DefinitionName>DisplayLabel</DefinitionName>
<Label>Tero Hasu</Label>

</ContactDetail>
<ContactDetail>

<DefinitionName>EmailAddress</DefinitionName>
<EmailAddress>tero.hasu@ii.uib.no</EmailAddress>

</ContactDetail>
<ContactDetail>

<DefinitionName>Guid</DefinitionName>
<Guid>000000003e7be123-00e18ae873575ee5-41</Guid>

</ContactDetail> ...
</Contact> ...

</Contacts>
Hasu, Bagge, Haveraaen (BLDL) Inferring Required Permissions for Statically Composed Programs

