
Source-to-Source Compilation in Racket
You Want it in Which Language?

Tero Hasu1 Matthew Flatt2

1Bergen Language Design Laboratory
University of Bergen

2PLT
University of Utah

IFL, 1–3 October 2014

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

key topics

▶ how to implement source-to-source compilers on top of Racket
▶ motivations:

▶ language infrastructure reuse
▶ support for implementing macro-extensible languages

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

macros for language definition

▶ Racket macros not only support language extension, but also
language definition

▶ host language syntax can be hidden entirely

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

”normal” execution of Racket languages

▶ Racket languages
are usually
executed within the
Racket VM

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

source-to-source compilers

▶ or transcompilers
▶ programming language implementations outputting source code
▶ especially nice with exotic platforms

▶ have a compiler write what the vendor says you should

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

don’t need no Racket

transcompiler implementation recipe:
1. pick your favorite programming language
2. pick useful libraries (parsing, pretty printing, etc.)
3. write an implementation

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

can get back-end side infrastructure reuse

▶ typically target language libraries
▶ e.g., language standard libraries, libuv, OpenGL, SQLite, …

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

what about front-end side?
▶ reuse of language facilities?

▶ macro systems, module systems, …
▶ reuse of dev tools?

▶ IDEs, documentation tools, macro debuggers, …

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

language embedding

▶ can use some host language functionality and tools
▶ still syntactically correct language
▶ might e.g. get type checking from host

Approaches in Haskell, Scala, etc.:
▶ shallow embedding

▶ language encoded directly as host operations
▶ deep embedding

▶ expressions evaluate to ASTs, which can then be evaluated or
translated

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

language embedding in Racket

▶ difference: Racket has a compile-time phase built-in
▶ gives more options for embedding

An attractive option:
▶ macro expressions evaluate to ASTs, which, still at compile-time:

▶ are made to encode Racket VM operations
▶ bonus: might write YourLang macros in YourLang

▶ are also made available for transcompilation

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

phase separation

▶ Racket’s phase separation guarantees that compile time and run
time have distinct bindings and state

▶ particularly crucial for a transcompiled language
▶ run time state: TargetLang (not Racket VM)
▶ run time bindings: YourLang (not Racket)

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompilation via Racket bytecode

▶ suitable when
implementing
Racket

▶ bytecode is
optimized for
efficiency—does
not retain all of the
original (core)
syntax

▶ there is an API for
parsing bytecode

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

JavaScript

Whalesong

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompilation via core Racket

▶ core syntax for any
Racket module can
be extracted
externally with
read−syntax, then
expand

▶ raco expand
has the details

C

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

mzc

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

macros in transcompiler implementation

A macro expander is a source-to-source ”compiler”—macros exist to
support source-to-source translation.

▶ general advantages:
▶ macro-based surface syntax definition gives parsing almost ”for

free”
▶ macros are convenient for ”sugary” constructs: syntax and

semantics specified at once
▶ macros are modular and composable

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

further exploitation of macro-expansion?

▶ might do back-end-specific work in macro expansion
▶ performing target-specific analyses and transformations
▶ collating required metadata
▶ encoding code and metadata in the desired format

▶ made separately loadable, even

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

Racket submodules
▶ enable testing time, documentation time, and more

▶ adding to Racket’s run and compile times

”.” Racket VM run-time code
main code for running the module standalone
test code for testing the module

srcdoc ”data-as-code” for inline documentation
can also have:

to-c++ code informing a C++ back end
to-java code informing a Java back end

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

accessing code from within
▶ a possibility unique(?) to Racket
▶ a Racket language can access all the code of a module

▶ can inspect it unexpanded, or expand it first
▶ can munge it in back-end-specific ways

(define-syntax (module-begin stx)
(syntax-case stx ()
[(module-begin form ...)
(let ([ast (local-expand

#'(#%module-begin form ...)
'module-begin null)])

(do-some-processing-of ast))]))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

compilation based on ”transcompile-time” code

▶ transcompiler
dynamic−requires
a submodule
prepared for it
during macro
expansion

▶ e.g. encoding a
syntax-checked
AST with type
annotations

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

C++

mglc

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

Magnolisp

▶ a proof-of-concept toy language
▶ surface syntax defined as macros
▶ Racket’s macro and module systems exposed

▶ macro-programming in any Racket VM based language
▶ execution options:

1. evaluation in the Racket VM
▶ supports ”mocking” of primitives, for simulation

2. by translating runtime code into C++
▶ by invoking separate mglc tool

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

Magnolisp syntax sample
#lang magnolisp
(typedef Int

(#:annos foreign))
(function (zero)

(#:annos foreign [type (fn Int)]))
(function (inc x)

(#:annos foreign [type (fn Int Int)]))

(function (one)
(inc (zero)))

(function (two)
(do (var x (one))

(return (inc x))))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

example Magnolisp to C++ translation

(function (one)
(inc (zero)))

(function (two)
(do (var x (one))

(return (inc x))))

▶ mglc does whole-program
optimization, type inference,
C++ translation, pretty
printing, etc.

▶ more interesting: the Racket
language implementation

MGL_FUNC Int one() {
return inc(zero ());

}

MGL_FUNC Int two() {
Int r ;
{

Int x = one();
{

r = inc(x);
goto b;

}
}
b:
return r ;

}

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

a.rkt

#lang magnolisp
(require "num-types.rkt")
(function (int-id x)
 (#:annos [type (fn int int)] export)
 x)

(module a magnolisp/main
 (#%module-begin

(module magnolisp-s2s racket/base
 (#%module-begin

....
(define-values (def-lst)
 (#%app list

 (#%app DefVar)
 ))

....))

....
(#%require "num-types.rkt")
(define-values (int-id))))

a.rkt (core) macroexpand

a.rkt magnolisp-s2s (instance)

def-lst

list

DefVar

annos

....

Id

.... int-id

Lambda

....

....

..
..

a.cpp

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
 return x;
}

#ifndef __a_hpp__
#include "a_config.hpp"
MGL_API_PROTO int int_id(int const& x);
#endif

a.hpp

translaterun

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompiled language as a library
▶ mostly a matter of exporting macros and variables
▶ syntax should be restricted to what can be transcompiled
▶ some macros should embed information for transcompilation

E.g., ”main.rkt” for plain−magnolisp language:
#lang racket/base
(module reader syntax/module-reader plain-magnolisp/main)

(require magnolisp/surface)
(provide #%app function typedef foreign export type fn)

(require magnolisp/modbeg)
(provide (rename-out [module-begin #%module-begin]))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

encoding foreign core language
▶ a transcompiled language’s core language may differ from

Racket’s
▶ macros expand to Racket core forms, but:

▶ the core forms may have custom syntax properties
▶ some variables may have special meaning
▶ etc.

E.g., a Magnolisp core form corresponding to a C++ goto label,
encoded as a call/ec application with a specific property:
(define-syntax (let/local-ec stx)

(syntax-case stx ()
[(_ . rest)
(syntax-property
(syntax/loc stx (let/ec . rest))
'local-ec #t)]))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

defining surface syntax
▶ with macros that expand to supported core language

(define-syntax-rule
(do body ...)
(let/local-ec k
(syntax-parameterize
([return
(syntax-rules ()
[(_ v) (apply/local-ec k v)])])

body ...
(values))))

(provide do)

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

encoding metadata
▶ describes a core syntactic construct, but isn’t one

(function (f x) (#:annos export)
(g x))

encoded as:
(define-values (f)

(let-values ([()
(begin

(if '#f (#%app #%magnolisp
'anno 'export '#t)

'#f)
(#%app values))])

(#%plain-lambda (x) (#%app g x))))
where let−values has syntax property ’annotate = #t

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

exporting information for transcompilation

▶ export in a submodule
▶ shift with begin−for−syntax as required to prevent running

enclosing module upon loading
▶ encode code as:

1. syntax-quoted code
▶ prevents evaluation, but preserves lexical-binding information
▶ as desired, can also preserve source locations or syntax properties

2. in the IR format used by the compiler
3. …

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

exporting full AST as syntax-quoted code
(define-syntax (module-begin stx)

(syntax-case stx ()
[(_ form ...)
(let ([x (local-expand

#'(#%module-begin form ...)
'module-begin null)])

(with-syntax ([(mb . forms) x]
[x-lit x])

#'(mb
(begin-for-syntax
(module* to-compile #f
(provide ast)
(define ast

(quote-syntax/keep-srcloc x-lit))))
. forms)))]))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

generality

▶ a general way to host a transcompiled language in Racket
▶ nothing special about Magnolisp

▶ principal constraint: a binding form in the hosted language must
be encoded as a binding form in Racket

▶ the process of hygienic macro expansion relies on it
▶ in return, Racket resolves names for you, and Racket tools

understand binding structure in YourLang

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

transcompiled-language construction kits

▶ Rascal
▶ Spoofax
▶ Silver
▶ …
▶ Racket

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

self-extension

A language supports self-extension if the language can be
extended by programs of the language itself while reusing
the language’s implementation unchanged.

Erdweg et al., 2012

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

language properties allowing pervasive abstraction
Racket supports the definition of languages that have:
1. self-extensibility

▶ syntactic extensibility through macros
2. scoping control of extensions

▶ module system and local macros
3. safe composition of extensions

▶ macro expansion preserves meaning of bindings and references

In other language toolkits, e.g.:
▶ Sugar* supports (1) and (2)
▶ Silver supports (3)

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

conditional compilation (idea)
Use of #if & co. is pragmatic in a cross-platform setting.

C++ example:
#include ”config.hh”

World init_any_ui(World const& w)
{
#if ON_BB10 || ON_HARMATTAN || ON_SAILFISH

return init_qt_ui (w);
#elif ON_CONSOLE

return init_ncurses_ui (w);
#else

return w;
#endif
}

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

conditional compilation (implementation)

(define-syntax (static-cond stx)
(syntax-case stx (else)
[(_) #'(void)]
[(_ [else stm]) #'stm]
[(_ [c stm] . rest)
(if (syntax-local-eval #'c)

#'stm
#'(static-cond . rest))]))

where:
▶ c is a Racket conditional expression, evaluated at compile time
▶ stm is a Magnolisp statement, for execution at runtime

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

conditional compilation (use)
(require (for-syntax "config.rkt"))
(function (init-any-ui w)

(#:annos export [type (fn World World)])
(do
(static-cond
[(or on-bb10 on-harmattan on-sailfish)
(return (init-qt-ui w))]
[on-console
(return (init-ncurses-ui w))]
[else
(return w)])))

With (define on−bb10 #t):
MGL_API_FUNC World init_any_ui(World const& w) {

return init_qt_ui (w);
}

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

declaring accessor functions (idea)

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

declaring accessor functions (implementation)
(define-syntax (declare-accessors stx)

(syntax-case stx ()
[(_ cls fld t)
(with-syntax

([get (format-id stx "∼a-get-∼a" #'cls #'fld)]
[set (format-id stx "∼a-set-∼a" #'cls #'fld)])

#'(begin
(function (get obj)
(#:annos [type (fn cls t)]

foreign))
(function (set obj v)
(#:annos [type (fn cls t cls)]

foreign))))]))

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

declaring accessor functions (use)

(declare-accessors Obj x int)

(function (f obj)
(#:annos export [type (fn Obj Obj)])
(Obj-set-x obj (inc (Obj-get-x obj))))

MGL_API_FUNC Obj f(Obj const& obj)
{

return Obj_set_x(obj, inc(Obj_get_x(obj)));
}

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

synopsis
A custom source-to-source compiled language can be a Racket
language, and it can have Racket’s usual scoped and safely
composable extensibility from within the language.

proof-of-concept
magnolisp.github.io

contact
tero@ii.uib.no
mflatt@cs.utah.edu

Hasu, Flatt (BLDL, PLT) Source-to-Source Compilation in Racket

http://magnolisp.github.io/
mailto:tero@ii.uib.no
mailto:mflatt@cs.utah.edu

