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key topics

▶ how to implement source-to-source compilers on top of Racket
▶ motivations:

▶ language infrastructure reuse
▶ support for implementing macro-extensible languages
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macros for language definition

▶ Racket macros not only support language extension, but also
language definition

▶ host language syntax can be hidden entirely
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”normal” execution of Racket languages

▶ Racket languages
are usually
executed within the
Racket VM

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile
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source-to-source compilers

▶ or transcompilers
▶ programming language implementations outputting source code
▶ especially nice with exotic platforms

▶ have a compiler write what the vendor says you should
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don’t need no Racket

transcompiler implementation recipe:
1. pick your favorite programming language
2. pick useful libraries (parsing, pretty printing, etc.)
3. write an implementation
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can get back-end side infrastructure reuse

▶ typically target language libraries
▶ e.g., language standard libraries, libuv, OpenGL, SQLite, …
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what about front-end side?
▶ reuse of language facilities?

▶ macro systems, module systems, …
▶ reuse of dev tools?

▶ IDEs, documentation tools, macro debuggers, …
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language embedding

▶ can use some host language functionality and tools
▶ still syntactically correct language
▶ might e.g. get type checking from host

Approaches in Haskell, Scala, etc.:
▶ shallow embedding

▶ language encoded directly as host operations
▶ deep embedding

▶ expressions evaluate to ASTs, which can then be evaluated or
translated
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language embedding in Racket

▶ difference: Racket has a compile-time phase built-in
▶ gives more options for embedding

An attractive option:
▶ macro expressions evaluate to ASTs, which, still at compile-time:

▶ are made to encode Racket VM operations
▶ bonus: might write YourLang macros in YourLang

▶ are also made available for transcompilation
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phase separation

▶ Racket’s phase separation guarantees that compile time and run
time have distinct bindings and state

▶ particularly crucial for a transcompiled language
▶ run time state: TargetLang (not Racket VM)
▶ run time bindings: YourLang (not Racket)
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transcompilation via Racket bytecode

▶ suitable when
implementing
Racket

▶ bytecode is
optimized for
efficiency—does
not retain all of the
original (core)
syntax

▶ there is an API for
parsing bytecode

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

JavaScript

Whalesong
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transcompilation via core Racket

▶ core syntax for any
Racket module can
be extracted
externally with
read−syntax, then
expand

▶ raco expand
has the details

C

Racket
macroexpand

core Racket

Racket VM
run

bytecode

compile

mzc
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macros in transcompiler implementation

A macro expander is a source-to-source ”compiler”—macros exist to
support source-to-source translation.

▶ general advantages:
▶ macro-based surface syntax definition gives parsing almost ”for

free”
▶ macros are convenient for ”sugary” constructs: syntax and

semantics specified at once
▶ macros are modular and composable
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further exploitation of macro-expansion?

▶ might do back-end-specific work in macro expansion
▶ performing target-specific analyses and transformations
▶ collating required metadata
▶ encoding code and metadata in the desired format

▶ made separately loadable, even
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Racket submodules
▶ enable testing time, documentation time, and more

▶ adding to Racket’s run and compile times

”.” Racket VM run-time code
main code for running the module standalone
test code for testing the module

srcdoc ”data-as-code” for inline documentation
can also have:

to-c++ code informing a C++ back end
to-java code informing a Java back end
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accessing code from within
▶ a possibility unique(?) to Racket
▶ a Racket language can access all the code of a module

▶ can inspect it unexpanded, or expand it first
▶ can munge it in back-end-specific ways

(define-syntax (module-begin stx)
(syntax-case stx ()
[(module-begin form ...)
(let ([ast (local-expand

#'(#%module-begin form ...)
'module-begin null)])

(do-some-processing-of ast))]))
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compilation based on ”transcompile-time” code

▶ transcompiler
dynamic−requires
a submodule
prepared for it
during macro
expansion

▶ e.g. encoding a
syntax-checked
AST with type
annotations

Magnolisp
macroexpand

core Racket

Racket VM
run

bytecode

compile

C++

mglc
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Magnolisp

▶ a proof-of-concept toy language
▶ surface syntax defined as macros
▶ Racket’s macro and module systems exposed

▶ macro-programming in any Racket VM based language
▶ execution options:

1. evaluation in the Racket VM
▶ supports ”mocking” of primitives, for simulation

2. by translating runtime code into C++
▶ by invoking separate mglc tool
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Magnolisp syntax sample
#lang magnolisp
(typedef Int

(#:annos foreign))
(function (zero)

(#:annos foreign [type (fn Int)]))
(function (inc x)

(#:annos foreign [type (fn Int Int)]))

(function (one)
(inc (zero)))

(function (two)
(do (var x (one))

(return (inc x))))
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example Magnolisp to C++ translation

(function (one)
(inc (zero)))

(function (two)
(do (var x (one))

(return (inc x))))

▶ mglc does whole-program
optimization, type inference,
C++ translation, pretty
printing, etc.

▶ more interesting: the Racket
language implementation

MGL_FUNC Int one( ) {
return inc(zero ());

}

MGL_FUNC Int two( ) {
Int r ;
{

Int x = one();
{

r = inc(x);
goto b;

}
}
b:
return r ;

}
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a.rkt

#lang magnolisp
(require "num-types.rkt")
(function (int-id x)
  (#:annos [type (fn int int)] export)
  x)

(module a magnolisp/main
  (#%module-begin

(module magnolisp-s2s racket/base
  (#%module-begin

....
(define-values (def-lst)
  (#%app list

  (#%app DefVar ....)
  ....))

....))

....
(#%require "num-types.rkt")
(define-values (int-id) ....)))

a.rkt (core) macroexpand

a.rkt magnolisp-s2s (instance)

def-lst

list

DefVar

annos

....

Id

.... int-id ....

Lambda

....

....

..
..

a.cpp

#include "a.hpp"
MGL_API_FUNC int int_id(int const& x) {
  return x;
}

#ifndef __a_hpp__
#include "a_config.hpp"
MGL_API_PROTO int int_id(int const& x);
#endif

a.hpp

translaterun
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transcompiled language as a library
▶ mostly a matter of exporting macros and variables
▶ syntax should be restricted to what can be transcompiled
▶ some macros should embed information for transcompilation

E.g., ”main.rkt” for plain−magnolisp language:
#lang racket/base
(module reader syntax/module-reader plain-magnolisp/main)

(require magnolisp/surface)
(provide #%app function typedef foreign export type fn)

(require magnolisp/modbeg)
(provide (rename-out [module-begin #%module-begin]))
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encoding foreign core language
▶ a transcompiled language’s core language may differ from

Racket’s
▶ macros expand to Racket core forms, but:

▶ the core forms may have custom syntax properties
▶ some variables may have special meaning
▶ etc.

E.g., a Magnolisp core form corresponding to a C++ goto label,
encoded as a call/ec application with a specific property:
(define-syntax (let/local-ec stx)

(syntax-case stx ()
[(_ . rest)
(syntax-property
(syntax/loc stx (let/ec . rest))
'local-ec #t)]))
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defining surface syntax
▶ with macros that expand to supported core language

(define-syntax-rule
(do body ...)
(let/local-ec k
(syntax-parameterize
([return
(syntax-rules ()
[(_ v) (apply/local-ec k v)])])

body ...
(values))))

(provide do)
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encoding metadata
▶ describes a core syntactic construct, but isn’t one

(function (f x) (#:annos export)
(g x))

encoded as:
(define-values (f)

(let-values ([()
(begin

(if '#f (#%app #%magnolisp
'anno 'export '#t)

'#f)
(#%app values))])

(#%plain-lambda (x) (#%app g x))))
where let−values has syntax property ’annotate = #t
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exporting information for transcompilation

▶ export in a submodule
▶ shift with begin−for−syntax as required to prevent running

enclosing module upon loading
▶ encode code as:

1. syntax-quoted code
▶ prevents evaluation, but preserves lexical-binding information
▶ as desired, can also preserve source locations or syntax properties

2. in the IR format used by the compiler
3. …
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exporting full AST as syntax-quoted code
(define-syntax (module-begin stx)

(syntax-case stx ()
[(_ form ...)
(let ([x (local-expand

#'(#%module-begin form ...)
'module-begin null)])

(with-syntax ([(mb . forms) x]
[x-lit x])

#'(mb
(begin-for-syntax
(module* to-compile #f
(provide ast)
(define ast

(quote-syntax/keep-srcloc x-lit))))
. forms)))]))
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generality

▶ a general way to host a transcompiled language in Racket
▶ nothing special about Magnolisp

▶ principal constraint: a binding form in the hosted language must
be encoded as a binding form in Racket

▶ the process of hygienic macro expansion relies on it
▶ in return, Racket resolves names for you, and Racket tools

understand binding structure in YourLang
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transcompiled-language construction kits

▶ Rascal
▶ Spoofax
▶ Silver
▶ …
▶ Racket
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self-extension

A language supports self-extension if the language can be
extended by programs of the language itself while reusing
the language’s implementation unchanged.

Erdweg et al., 2012
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language properties allowing pervasive abstraction
Racket supports the definition of languages that have:
1. self-extensibility

▶ syntactic extensibility through macros
2. scoping control of extensions

▶ module system and local macros
3. safe composition of extensions

▶ macro expansion preserves meaning of bindings and references

In other language toolkits, e.g.:
▶ Sugar* supports (1) and (2)
▶ Silver supports (3)
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conditional compilation (idea)
Use of #if & co. is pragmatic in a cross-platform setting.

C++ example:
#include ”config.hh”

World init_any_ui(World const& w)
{
#if ON_BB10 || ON_HARMATTAN || ON_SAILFISH

return init_qt_ui (w);
#elif ON_CONSOLE

return init_ncurses_ui (w);
#else

return w;
#endif
}
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conditional compilation (implementation)

(define-syntax (static-cond stx)
(syntax-case stx (else)
[(_) #'(void)]
[(_ [else stm]) #'stm]
[(_ [c stm] . rest)
(if (syntax-local-eval #'c)

#'stm
#'(static-cond . rest))]))

where:
▶ c is a Racket conditional expression, evaluated at compile time
▶ stm is a Magnolisp statement, for execution at runtime
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conditional compilation (use)
(require (for-syntax "config.rkt"))
(function (init-any-ui w)

(#:annos export [type (fn World World)])
(do
(static-cond
[(or on-bb10 on-harmattan on-sailfish)
(return (init-qt-ui w))]
[on-console
(return (init-ncurses-ui w))]
[else
(return w)])))

With (define on−bb10 #t):
MGL_API_FUNC World init_any_ui(World const& w) {

return init_qt_ui (w);
}
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declaring accessor functions (idea)
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declaring accessor functions (implementation)
(define-syntax (declare-accessors stx)

(syntax-case stx ()
[(_ cls fld t)
(with-syntax

([get (format-id stx "∼a-get-∼a" #'cls #'fld)]
[set (format-id stx "∼a-set-∼a" #'cls #'fld)])

#'(begin
(function (get obj)
(#:annos [type (fn cls t)]

foreign))
(function (set obj v)
(#:annos [type (fn cls t cls)]

foreign))))]))
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declaring accessor functions (use)

(declare-accessors Obj x int)

(function (f obj)
(#:annos export [type (fn Obj Obj)])
(Obj-set-x obj (inc (Obj-get-x obj))))

MGL_API_FUNC Obj f(Obj const& obj)
{

return Obj_set_x(obj, inc(Obj_get_x(obj)));
}
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synopsis
A custom source-to-source compiled language can be a Racket
language, and it can have Racket’s usual scoped and safely
composable extensibility from within the language.

proof-of-concept
magnolisp.github.io

contact
tero@ii.uib.no
mflatt@cs.utah.edu
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